
Atopic dermatitis and skin disease

Early-onset pediatric atopic dermatitis is TH2 but
also TH17 polarized in skin
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Background: Atopic dermatitis (AD) affects 15% to 25% of
children and 4% to 7% of adults. Paradigm-shifting discoveries
about AD have been based on adult biomarkers, reflecting
decades of disease activity, although 85% of cases begin by
5 years. Blood phenotyping shows only TH2 skewing in patients
with early-onset pediatric AD, but alterations in early pediatric
skin lesions are unknown, limiting advancement of targeted
therapies.

Objective: We sought to characterize the early pediatric AD
skin phenotype and its differences from pediatric control
subjects and adults with AD.
Methods: Using immunohistochemistry and quantitative
real-time PCR, we assessed biopsy specimens from 19 children
with AD younger than 5 years within 6 months of disease onset
in comparison with adults with AD or psoriasis and pediatric
and adult control subjects.
Results: In lesional skin children showed comparable or greater
epidermal hyperplasia (thickness and keratin 16) and cellular
infiltration (CD31, CD11c1, and FcεRI1) than adults with AD.
Similar to adults, strong activation of the TH2 (IL-13, IL-31, and
CCL17) and TH22 (IL-22 and S100As) axes and some TH1
skewing (IFN-g and CXCL10) were present. Children showed
significantly higher induction of TH17-related cytokines and
antimicrobials (IL-17A, IL-19, CCL20, LL37, and peptidase
inhibitor 3/elafin), TH9/IL-9, IL-33, and innate markers (IL-8)
than adults (P < .02). Despite the characteristic downregulation
in adult patients with AD, filaggrin expression was similar in
children with AD and healthy children. Nonlesional skin in
pediatric patients with AD showed higher levels of inflammation
(particularly IL-17A and the related molecules IL-19 and LL37)
and epidermal proliferation (keratin 16 and S100As) markers
(P < .001).
Conclusion: The skin phenotype of new-onset pediatric AD is
substantially different from that of adult AD. Although excess
TH2 activation characterizes both, TH9 and TH17 are highly
activated at disease initiation. Increases in IL-19 levels might
link TH2 and TH17 activation. (J Allergy Clin Immunol
2016;138:1639-51.)
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Atopic dermatitis (AD) is one of the most common pediatric
disorders, affecting 15% to 25% of children and 4% to 7% of
adults.1,2 It usually begins within the first 5 years of life, and when
encountered in adults, the disease has generally been present for
decades.

In adults AD skin immune fingerprinting has been linked
to more than 1 cytokine pathway, including possible roles for
TH2, TH22, and even TH17/IL-23 activation in creating the
AD phenotype.3-6 Furthermore, suppression of these pathways
correlates with clinical disease resolution with both broad7-9
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Abbreviations used

AD: Atopic dermatitis

ADQ: Atopic Dermatitis Quickscore

AMP: Antimicrobial peptide

DC: Dendritic cell

EASI: Eczema Area and Severity Index

FOXP3: Forkhead box P3

hARP: Human acidic ribosomal protein

IRB: Institutional review board

K16: Keratin 16

OX40L: OX40 ligand

PI3: Peptidase inhibitor 3

PIQoL: Parent’s Index of Quality of Life

TEWL: Transepidermal water loss

TSLPR: Thymic stromal lymphopoietin receptor

and specific TH2-targeting treatments.10,11 The increased
understanding of the molecular circuits associated with chronic
AD in adults has accelerated therapeutic development and testing
of possible targets, largely targeting the adult population with
AD.6,12

Despite its predominance in children, the factors that influence
development of early onset of AD lesions in children have
received minimal attention. The immune polarity and epidermal
changes in patients with early-onset pediatric AD might differ
from those in adult patients with AD, reflecting decades of disease
activity and chronic use of immunosuppressants in adults.
Understanding molecular circuits of evolving AD skin lesions
in children and their differences and similarities from those of
adults is critical for prioritizing pathogenesis-based AD therapies
in children. Studies of early pediatric AD are largely limited to
peripheral blood13-26 and have shown that disease activity
correlates with a few serum biomarkers (ie, IL-31, CCL17,
CCL22, CCL27, eosinophils, and IgE) and limited mRNA
expression of TH2/TH1 markers.27-31 Increases in memory
T-cell numbers have been observed with age,32-35 and recently,
we reported expanded TH2 cells, but not other polar T-cell
subsets, in blood.36 One study investigated nonlesional skin in
adolescents with AD, highlighting interferon responses similar
to those seen in the setting of adult chronic AD.26

To evaluate immune and epidermal factors that contribute to
early AD development, we investigated lesional and nonlesional
biopsy specimens from infants with AD (<5 years old and within
6 months of diagnosis) and compared them with those from
age-matched pediatric control subjects. Tissues from adults with
well-characterized AD and patients with psoriasis and control
tissues from prior cohorts3,8,37 were also analyzed to contrast
early pediatric AD across a different range of polar cytokines.
We found that nonlesional skin of infants with AD is already
characterized by overt immune activation with strong TH2
skewing but even more impressive activation of innate and
IL-17–associated mediators, which is further amplified in
pediatric lesions.

METHODS

Patients’ characteristics
Nineteen children aged 3 months to 5 years with AD onset in the previous

6 months and moderate-to-severe disease were enrolled. Parents signed

institutional review board (IRB)–approved written consent forms. Use of

systemic immunosuppressants in the past 4 weeks, topical steroids or

immunomodulators within 1 week, or moisturizers within 12 hours from

biopsy were restricted, and patients with skin infections were excluded.

Demographic data, serum IgE levels, disease scoring with SCORAD and

Eczema Area and Severity Index (EASI), and quality-of-life and itch

assessments (Atopic Dermatitis Quickscore [ADQ] and the Parent’s Index

of Quality of Life in Atopic Dermatitis [PIQoL-AD]) were performed.

Transepidermal water loss (TEWL) was measured at biopsy sites by using the

Tewameter (Courage and Khazaka GmbH, Cologne, Germany). Lesional and

nonlesional 4-mm biopsy specimens from affected popliteal and unaffected

buttock skin, respectively, were obtained. Control skin was collected

during routine surgical procedures from 14 age-matched subjects

without personal/familial atopy after IRB-approved parental consent

(see Table E1 and the Methods section in this article’s Online Repository at

www.jacionline.org).

Tissues from the extremities of adults with lesional and nonlesional

moderate-to-severe AD (n 5 15; age, 33-72 years) and patients with

moderate-to-severe lesional psoriasis (n5 10; ages, 30-64 years) and control

subjects (n 5 8; age, 40-57 years) from previously reported IRB-approved

cohorts3,8,37 were included in the analyses. SCORAD scores were available

for adults with AD, and Psoriasis Area and Severity Index scores were

available for patients with psoriasis. Baseline characteristics were similar

within groups, except for ethnicity in children (Table I), but a sensitivity

analysis in the white children subgroup showed similar results to the entire

population (data not shown). Demographics and laboratory data are

summarized in Table I, Table E1, and the Methods section in this article’s

Online Repository.

Immunohistochemistry and immunofluorescence
Immunohistochemistry and immunofluorescence procedures were

performed on frozen sections by using purified mouse anti-human mAbs

(see Table E2 in this article’s Online Repository at www.jacionline.org for

details), as previously described9,38,39 and as outlined in the Methods section

in this article’s Online Repository.

Quantitative real-time PCR
RNA was extracted, and reverse transcription to cDNA from RNA was

carried out with the High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, Calif). cDNA was amplified with TaqMan PreAmp

Master Mix (Applied Biosystems), and the preamplified cDNA product was

analyzed with TaqMan Gene Expression Master Mix, as previously

described.3 Primers and probes used in this study are listed in Table E3 in

this article’s Online Repository at www.jacionline.org. All expression values

were normalized to human acidic ribosomal protein (hARP; see Table E4 in

this article’s Online Repository at www.jacionline.org).

Statistical analyses
hARP-normalized RT-PCR expression values of less than the limit of

detection were imputed as 20% of the minimum observed values (over the

limit of detection) and log2-transformed before analysis. No other missing

value imputation method was performed, and all available observations

from eligible subjects were included in analyses and carried out in R software

(www.R-project.org) and its available packages. Differences in expression

values (in log2-scale), cell counts, and clinical variables between conditions

were assessed by using linear models.

In paired lesional and nonlesional analyses from single patients, a mixed

model with random intercept for each patient was used instead. Once the

model was fitted (using lm and lme functions), least-squares means were

obtained, and group comparisons were assessed by using the 2-tailed t test

with contrasts (by using functions lsmean and contrast in R package lsmeans).

Significance levels were less than .05.

Unsupervised hierarchical clustering of variables or samples/patients was

performed by using the correlation coefficient as a distance metric with an

average agglomeration algorithm and represented as a heat map with a
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dendrogram or PhyloTree (by using the R package ape; see extended statistics

in this article’s Online Repository).

RESULTS
Clinical distribution of AD differs in children and adults.2 In

infants lesions typically develop on the face (Fig 1, A), extensors
(Fig 1, B), trunk (Fig 1, C), and folds (Fig 1, D), classically
sparing the diaper areas (Fig 1, E). In adolescents and adults
AD extends to the flexures, hands, neck, upper trunk, and shoul-
ders (Fig 1, F-J).

To investigate early-onset AD in children, we analyzed lesional
and nonlesional biopsy specimens from 19 children younger than
5 years with moderate-to-severe AD (mean age, 1.3 years) with a
disease duration of less than 6 months and healthy skin from
age-matched control subjects (n 5 14). Adult patients with AD
(n5 15), adult patients with psoriasis (n5 10), and adult control
subjects (n 5 8) were run concurrently to allow appropriate

comparisons with all polar cytokine pathways displayed by the
chronic phenotypes of these inflammatory skin diseases.

Early pediatric AD exhibits profound epidermal

hyperplasia but lacks the filaggrin deficiency of

adult AD
We first evaluated characteristics of the pathologic epidermal

phenotype using disease biomarkers established for adult AD
(Fig 2, A-E).4,8,9,38 Despite the short disease duration in our
pediatric cohort, remarkable epidermal hyperplasia (as measured
by thickness, expression of keratin 16 [K16] mRNA and protein,
Ki-671 counts, andS100A8/9 expression)was seen both in patients
with lesional and those with nonlesional pediatric AD compared
with that healthy skin, which was comparable or even higher than
in adults with AD and psoriasis (Fig 2, F-I). K16 epidermal expres-
sion was noted in 14 (74%) of 19 nonlesional pediatric but only 3
(23%) of 13 nonlesional adult biopsy specimens (Fig 2,B). Healthy

TABLE I. Baseline characteristics

Patients

Healthy

children

n 5 14

Children

with AD

n 5 19

P value

(children)

Healthy

adults

n 5 8

Adults

with AD

n 5 15

Adults with

psoriasis

n 5 10

P value

(adults)

Age (y), mean (range) 1.3 (0.6-3.0) 1.3 (0.3-5.0) .923 50.9 (40-57) 51.4 (33-72) 51.3 (30-64) .994

Sex, no. (%) .364 .162

Female 9 (64.3) 8 (42.1) 1 (12.5) 8 (53.3) 4 (40.0)

Male 5 (35.7) 11 (57.9) 7 (87.5) 7 (46.7) 6 (60.0)

Ethnicity, no. (%) .019 1

Asian/Pacific Islander 1 (7.1) 2 (10.5) 0 (0.0) 0 (0.0) 0 (0.0)

African American 0 (0.0) 5 (26.3) 0 (0.0) 0 (0.0) 0 (0.0)

Hispanic 0 (0.0) 4 (21.1) 0 (0.0) 0 (0.0) 0 (0.0)

White 13 (92.9) 8 (42.1) 8 (100.0) 15 (100.0) 10 (100.0)

SCORAD score,* mean (SD) NA 57.8 (12.8) NA 56.7 (11.1) NA

PASI score, mean (SD) NA NA NA NA 20.3 (15.4)

Biopsies n 5 14 (HC) n 5 19 (LS and NL) n 5 8 (HC) n 5 15 (LS and NL) n 5 10 (LS)

IgE (kU/L)� (log10), mean (SEM) ND 2.11 (0.35), n 5 7 ND 2.15 (0.25), n 5 15 ND

HC, Healthy control; LS, lesional; NA, not applicable; ND, not done; NL, nonlesional; PASI, Psoriasis Area and Severity Index.

*P value for SCORAD scores in children with AD versus adults with AD 5 .794.

�Reference range: adults 5 0-200 kU/L; children 5 0-100 kU/L; P value for children versus adults 5 .93.

FIG 1. Clinical differences between pediatric and adult AD. Representative pictures of infants during the first

6 months of disease onset (A-E) and adults with years to decades of chronic disease (F-J) are shown.
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control subjects were essentially negative for K16 both in pediatric
and adult subjects (Fig 2, B). Higher Ki-671 counts and K16 and
S100A8 mRNA levels were observed in pediatric compared with
adult lesions (P < .01; Fig 2, G-I). FLG mRNA expression was
higher in childhood versus adult AD, with an expression pattern
more similar to that of adult psoriasis (Fig 2, J). Filaggrin protein
expression in children with AD was similar to that in control
subjects, showing a more continuous expression in the outer layers
of the epidermis than in adult patients (Fig 2, E).

T-cell and dendritic cell infiltrates are similarly

increased in pediatric and adult patients with AD
We next assessed cellular infiltrates, including CD31 T cells,

CD11c1 myeloid dendritic cells (DCs), and cells that
express the high-affinity IgE receptor FcεRI1, which is found,
among others (see Fig E1 in this article’s Online Repository at
www.jacionline.org), on inflammatory epidermal dendritic
cells.40,41 Both pediatric and adult patients with AD showed large
cellular infiltrates (Fig 3). Although counts of T cells and CD11c1

DCs were comparable in patients with AD (regardless of age) and

psoriasis, FcεRI1 cell counts were significantly higher in children
with AD compared with both adult patients with AD and those
with psoriasis (Fig 3, D-F).

Pediatric AD is characterized by TH17 activation and

related antimicrobial peptides
To evaluate for mRNA expressions of innate and polar TH

cytokines, as well as regulatory and epidermal differentiation
markers, which are usually less than detection levels on gene
arrays,42 we performed quantitative real-time PCR for a large
array of mediators (Fig 4 and see Fig E2 in this article’s Online
Repository at www.jacionline.org). Mean expressions of all 53
assessed immune and epidermal markers are also depicted in an
unsupervised hierarchical clustering heat map (Fig 5, A). Distinct
differences were detected between pediatric and adult patients
with AD, with several molecules being strongly upregulated in
adult patients with but less so in children with AD (Fig 5, A,
yellow box). Conversely, many markers were similarly
upregulated in pediatric patients with AD and psoriasis and, to
a lesser extent, in adult patients with AD (Fig 5, A, green box).

A

B

C

D

E

F G H I J

FIG 2. A-E, Representative staining in pediatric and adult patients with AD, patients with psoriasis (PSO),
and control subjects by using hematoxylin and eosin (Fig 2, A), K16 with fractions of

immunohistochemistry-positive samples (Fig 2, B), Ki-67 (Fig 2, C), S100A8/A9 (Fig 2, D), and FLG (Fig 2,

E). F-J, Quantification of epidermal thickness (Fig 2, F), K16 mRNA (Fig 2, G), Ki-671 keratinocytes (Fig 2,

H), S100A8 mRNA (Fig 2, I), and FLG mRNA (Fig 2, J). mRNA log2 values were adjusted to hARP values.

Values are means 6 SEMs. Stars above and below error bars denote comparisons to matched healthy

control skin (black stars) and psoriasis (blue stars), respectively. LS, Lesional; NL, nonlesional. *P < .05,

**P < .01, and ***P < .001.
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FIG 3. Representative immunohistochemistry staining in pediatric and adult patients with AD, patients with

psoriasis (PSO), and control subjects. CD31 T cells (A), CD11c1 DCs (B), FcεRI1 staining (C), and respective

cell counts (D-F) are shown. Values are presented as means 6 SEMs. Stars above and below error bars

denote comparisons with matched healthy control skin (black stars) and psoriasis (blue stars), respectively.
LS, Lesional; NL, nonlesional. *P < .05, **P < .01, and ***P < .001.

A

G

M

S T U V W X

N O P Q R

H I J K L

B C D E F

FIG 4. A-X, Quantitative real-time PCR comparisons of selected inflammatory and epidermal barrier

markers are shown. Values show log2 expression/hARP and presented as means 6 SEMs. Stars above
and below error bars denote comparisons with matched healthy control skin (black stars) and psoriasis

(blue stars), respectively. *P < .05, **P < .01, and ***P < .001.
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FIG 5. Unsupervised hierarchical clustering of mRNA/hARP expression. A, Heat map (mean) with fold

changes. Yellow box, Cluster of upregulation in adult versus pediatric patients with AD; green box,
upregulation in pediatric patients with AD/psoriasis versus adult patients with AD. 1P < .1, *P < .05, and

**P < .01. Red, Upregulation; blue, downregulation. B, Unsupervised clustering of samples (phylogenetic

tree) based on expression profiles of 53 immune/barrier markers: distance, Pearson correlation;

agglomeration, average. Single dots denote individual samples interspersed in otherwise homogeneous

clusters. LS, Lesional; NL, nonlesional.
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Much higher immune activation was seen in nonlesional
pediatric versus adult AD skin, which might reflect AD initiation
(Fig 5, A).

In comparison with adult healthy skin, pediatric control skin
showed large increases in innate markers (IL-1b, IL-8, and
IFN-a1), T/natural killer cell activation, and regulatory markers
(IL-2, IL-15, and IL-10), with less evident increases in pediatric
versus adult lesions compared with respective controls (P < .05;
Fig 4, A-E, and Fig 5, A; and see Fig E2, X, and Table E4
in this article’s Online Repository at www.jacionline.org).
TH17/TH22-related genes (IL-17A, IL-12/23p40, CCL20, LL37,
and IL-22) also showed significant increases in pediatric versus
adult control subjects (P < .05; Figs 4, N, P, Q, S, and V, and 5,
A, and see Table E4). Much smaller increases in IFN-g–related
mRNAs (CXCL9, CXCL10, CXCL11, and MX1) were seen in
pediatric versus adult patients with AD (comparedwith respective
control subjects), although IFN-g levels were comparable (Figs 4,
G, and 5, A, and see Fig E2, A-C, and Table E4). Expression of
The IL-12/IL-23p40 and IL-12/23 receptor subunits IL12RB1
and IL12RB2 were significantly increased in pediatric versus
adult control subjects yet were significantly decreased in pediatric
versus adult patients with AD (Figs 4, N, and 5, A, and see Fig E2,
D and E, and Table E4). As expected,43 adult patients with psori-
asis had significant increases in innate (IL-1b, IL-8, and IFN-a1),
TH1/IFN-g–related (IFN-g and CXCL10), TH17/IL-23 and
related antimicrobial peptides (AMPs; IL-17A, IL-23p19,
CCL20, DEFB4, and LL37) and differentiation markers (FLG,
loricrin, and PPL) compared with control subjects (P < .05;
Figs 4, A-C, F, G, O-Q, and S, and 5, A, and see Fig E2, Q, and
Table E4).

Levels of TH2 cytokines (IL-13, CCL17, CCL18, CCL22,
CCL26, OX40 ligand [OX40L], and thymic stromal
lymphopoietin receptor [TSLPR]) were greatly increased in
both pediatric and adult patients with AD; with exceptions of
IL-5 and IL-31, increases were much higher in adults (Figs 4,
H, I, K, and L, and 5, A, and see Fig E2, H and J-M, and Table
E4). IL-33 levels were increased in children but were not
increased in patients with AD (Figs 4, J, and 5, A, and see
Table E4). IL-9/TH9 levels were markedly increased in pediatric
AD lesions (Figs 4, M, and 5, A, and see Table E4).

Although levels of IL-17–related mediators and AMPs were
already increased in healthy children compared with adults (ie,
LL37: 2890-fold changes in children/adults; P < .01), highly
significant increases were still observed in many of these markers
in pediatric patients with AD (IL-19, S100A8, S100A12,
lipocalin 2, and LL37), even after adjusting for baseline levels
(P < .05; Fig 5, A). Overall, expression of TH17-related and
some hyperplasia mediators (IL-19, S100As, and K16) in
pediatric patients with AD were comparable with that seen in
patients with psoriasis (Figs 2, G and I; 4, T, W, and X; and
Fig 5,A, and see Table E4). IL-20, IL-21, and IL-22 levels showed
significant increases in pediatric versus adult control subjects, as
well as increased expression in patients with AD compared with
control children but not compared with adult patients with AD
after adjusting for respective healthy skin (Fig 5, A). In contrast,
levels of regulatory markers (IL-10 and forkhead box P3
[FOXP3]) showed significant decreases in pediatric versus adult
patients with AD, despite increases in respective control subjects
(Fig 5, A, and see Fig E2, X and Y, and Table E4). Levels of
differentiation markers (FLG and loricrin) were reduced only in
adult patients with AD (Fig 5, A).

Early pediatric AD shows phenotypic similarities to

psoriasis
In view of similar activation in many inflammatory genes in

childhood AD and psoriasis (Fig 5, A, green box) and to better
visualize the relations between pediatric and adult patients with
AD, patients with psoriasis, and respective control subjects, we
performed unsupervised clustering analyses using all expression
values. Results are represented as a phylogenetic tree (Fig 5, B).
As expected, lesional psoriasis (a highly inflammatory disease
typically involving adults)43 clustered far from adult AD. Surpris-
ingly, lesional and nonlesional pediatric AD clustered closely
with lesional adult psoriasis and far from healthy
control subjects and adult AD. Lesional and nonlesional
adult AD formed distinct clusters, which were much more
distant from their pediatric counterparts, reflecting molecular
differences between early AD in children and chronic adult
disease (Fig 5, B).

Correlations of clinical, cellular, and molecular

markers in pediatric patients with AD
We next evaluated associations of different clinical measures

(SCORAD, EASI, ADQ/pruritus, PIQoL, and TEWL) with
immune and barrier pediatric AD skin biomarkers. A graphic
representation of the distance between variables for nonlesional
and lesional pediatric AD are presented as phylogenetic trees
(Fig 6 and see Fig E3 in this article’s Online Repository at
www.jacionline.org, respectively) and as heat maps showing
positive (red) or negative (blue) correlations, with the color
intensity reflecting strength of correlations. In patients with
lesional AD, clinical scores clustered with hyperplasia markers
(Ki-67 and thickness) and close to TH2 cytokines (IL-13 and
IL-31), IgE, and FcεRI1 (see Fig E3, A). IL-17A (and its
associated chemokine CXCL1) formed a single cluster with
IL-20 family cytokines (IL-19, IL-20, and IL-22; see Fig E3, A
and B, green box); AMPs (DEFB4B, LL37, HBD3, and
S100As) clustered with IL-23p19 and IL-23 receptor (see
Fig E3, A and B, black box).

Several positive correlations (see Table E5 in this article’s
Online Repository at www.jacionline.org) were found between
clinical activity scores (EASI and SCORAD scores, see
Table E5, A and B) and expression of inflammatory mediators
in AD lesions, including innate (IFN-a1), TH2-related (CCL18
and TSLPR), or TH17/TH22-related (IL-19 and S100A8)markers,
as well as quality of life, pruritus (Pruritus ADQ and PIQoL), and
barrier (TEWL) measures. Impressive correlations were found
between TEWL, a functional barrier measure, and many immune
markers, particularly TH17/TH22 (IL-21, S100As, IL-23R,
CCL20, IL-12/23p40, IL-23p19, and IL-22) and TH2/TSLPR
markers (see Table E5, C). Pruritus scores showed correlations
with disease activity and epidermal hyperplasia (see Table E5,
D and E). Serum IgE levels positively correlated with cellular
infiltrates (particularly FcεRI1 cells) and IL-13 and negatively
with IFN-g– and IL-17–related (IL-17A, S100A9, and peptidase
inhibitor 3 [PI3]/elafin) genes (see Table E5, F).

Many correlations were observed at the nonlesional skin level
(Fig 6 and Tables II-X), with a clustering pattern similar to that
seen in lesional skin (Fig 6, A). Clinical scores clustered in
proximity to hyperplasia/Ki-67 and TH2 markers (IL-4, IL-5,
OX40L, and TSLPR). Strong correlations were observed
between disease activity scores and TH2 (TSLPR and OX40L)
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FIG 6. Correlation matrix of clinical, immune, and barrier measures in pediatric patients with nonlesional

AD. A, Phylogenetic tree showing unsupervised hierarchic clustering using Spearman correlations as a

similarity metric and average agglomeration algorithm. B, Correlation heat map and dendrogram.
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and IL-17–associated (IL-19 and PI3/elafin) markers (Fig 6, B,
and Tables II and III). FOXP3 levels were associated also with
disease activity (Tables II and III). High correlations were found
between serum IgE levels and FcεRI1 cell counts in nonlesional
skin, which approached significance with IL-5 and IL-13/TH2
(Table IV). Similar to lesional skin, negative correlations were
found between IgE levels and TH1/TH17 markers (CXCL10,
CCL20, and PI3/elafin; see Table E2, C). TEWL in nonlesional
skin was highly correlated with EASI scores, as well as with
several TH17-related (CXCL1 and IL-19) and to a lesser extent
with TH2-associated (CCL18) genes (TableV).Many correlations
were found between hyperplasia measures (thickness and K16)
and immune markers (Tables VI and VII). Epidermal thickness
showed highest associations with TH2 mediators (IL-13 and
CCL26), followed by correlations with known hyperplasia medi-
ators (IL-22, S100As, and IL-21; Table VI).44 High correlations
were also found between K16 levels and IL-22/IL-17–related
(S100As, IL-12/23p40/IL-23p19, IL-22, IL-17A, LL37, and
IL-19) and a few TH2 (CCL17 and CCL18) markers (Table VII).

DISCUSSION
Recent data from adults with moderate-to-severe AD shed light

on the immune and epidermal abnormalities that characterize
nonlesional and acute and chronic AD lesional skin.4,6,8,38,45

Acute lesions in adults are characterized by robust TH2/TH22
activation, with some IL-17 skewing. With disease chronicity,
there is intensification of these axes and marked TH1

activation.4,46-48 Barrier defects and, to a lesser extent, immune
abnormalities are apparent in nonlesional skin, with abnormal-
ities in terminal differentiation proteins, tight junctions, and
lipids.26,38,45,49-55 Clinical severity in adult patients with AD
has been positively associated with increases in TH2 and TH22/
TH17 markers and negatively correlated with differentiation
markers. Furthermore, disease improvement with broad and
specific treatments lead to decreases in TH2/TH22/TH17 cytokine
levels and some increases in barrier gene expression.7-9,11 The
increased pathogenic understanding in adult patients with AD is
now translating into rapid development and testing of therapeutics
for AD.10,56

Nevertheless, AD usually begins in children younger than
5 years, when it also shows the highest prevalence,57-60 and the
current concepts of pathogenesis largely rely on studies from
adult patients in whom the disease is usually present for many
years.2,6,52 Little is known about alterations in skin immunity
and barrier function that occur during early-onset AD in children
or even about expression patterns in healthy skin of young
children. This paucity of investigation of early pediatric AD
skin has limited advancement of targeted treatments for children,
with their large unmet need for safe and effective therapeutics.2

The few US Food and Drug Administration–approved treatments
for children with AD (some topical corticosteroids and
calcineurin antagonists) were based on empirical evidence and
are suboptimal for many pediatric patients with moderate-to-
severe AD.61,62 Comparing the cellular and molecular changes
that characterize lesional and nonlesional skin from recent-onset
AD in infants and young children with healthy pediatric skin, as
well as with adult AD and psoriasis as a point of reference for
polar inflammatory diseases, is critical for advancing current
interventions into children and might suggest novel targets for
pediatric AD.

This is the first study of the cellular and molecular changes that
characterize lesional and nonlesional skin from infants with early

TABLE II. Spearman correlations with EASI in nonlesional

pediatric skin

Marker r P value

TEWL 0.733 .001

PIQoL 0.668 .002

SCORAD 0.648 .003

Pruritus ADQ 0.553 .016

FOXP3 0.47 .044

FLG 0.467 .046

IL19 0.435 .064

CCL18 0.414 .079

CDSN 0.409 .083

CDSN, Corneodesmosin.

TABLE III. Spearman correlations with SCORAD scores in

nonlesional pediatric skin

Marker r P value

EASI 0.648 .003

IL12RB2 0.581 .009

TSLPR 0.561 .012

PIQoL 0.544 .016

Pruritus ADQ 0.497 .03

OX40L 0.478 .039

PI3 0.424 .07

IL12RB1 0.424 .07

FOXP3 0.418 .075

FcεRI 0.401 .099

CCL21 0.4 .09

HBD3 0.395 .094

CCL18 0.386 .103

HBD3, Human beta defensin 3.

TABLE IV. Spearman correlations with IgE in nonlesional

pediatric skin

Marker r P value

FcεRI 0.786 .048

IL5 0.714 .088

IL13 0.679 .1

PI3 20.786 .048

IL1B 20.786 .048

CXCL10 20.786 .048

CCL20 20.821 .034

TABLE V. Spearman correlations with TEWL in nonlesional

pediatric skin

Marker r P value

EASI 0.733 .001

CXCL1 0.554 .023

IL19 0.529 .031

PIQoL 0.456 .066

CCL18 0.424 .091

CDSN 0.409 .104

CDSN, Corneodesmosin.
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AD (<5 years old, within 6 months of disease onset). In
healthy pediatric skin we found an array of increased innate and
IL-17/IL-22–related markers and AMPs when compared with
adult control subjects (IL-8, IL-17A, LL37, and defensins), which
is consistent with previous reports from neonatal mice or human
foreskin.63,64 This patternmight reflect the response of young skin
to infectious agents when adaptive immunity is not fully
functional65 but could also promote the development of AD,
which peaks in infancy and early childhood.2

Nonlesional skin of infants with a new diagnosis of AD already
harbors keratinocyte hyperactivation (K16 and S100A) accom-
panied by significant inflammation, as evidenced by infiltrates
(FcεR11 cells)40,41 and activated cytokines increased to levels
often higher than those in adults.38 Consistently, disease activity
was correlated with nonlesional pediatric expression levels of
several immune mediators that might play a role in disease
initiation, including TSLPR and OX40L.66-69

Lesional pediatric AD skin showed marked epidermal
hyperplasia comparable with that in adult patients chronically
affected by AD and psoriasis. TEWL, a predictor of allergic
sensitization in infancy,70 closely correlated with TH17/TH22 and
a few TH2 biomarkers, suggesting an interplay between activation
of these axes and barrier dysfunction. The negative correlation
between IgE and TH17 molecules supports the concept that
intrinsic AD harbors stronger TH17 responses.5

Despite remarkable hyperplasia and abnormal TEWL,70,71 the
FLG deficiency of adult AD72,73 is missing in patients with early
AD, which is consistent with a previous report in nonlesional
adolescent skin from FLG wild-type patients.26 FLG has been
suggested to play a key role in early development of AD and other
atopic disorders because of a breach in the epidermal barrier
allowing for sensitization to environmental antigens.44,74 Our
findings might challenge the notion of filaggrin as central for

disease elicitation and an instigator of the atopic march.75

Another feature of adult AD is reduction in AMP levels, in
contrast to psoriasis,76 explaining why patients with AD but not
those with psoriasis are predisposed to recurrent infections.76,77

In our pediatric AD cohort, AMP levels (LL37, DEFB4B, and
lipocalin 2) were highly increased, often to levels even higher
than those in patients with psoriasis. These increased AMP levels
could potentially trigger skin inflammation through DNA/RNA
complexes binding Toll-like receptors 7 to 9, similar to what is
seen in patients with psoriasis,78,79 in which LL37 might function
as an autoantigen, possibly initiating and perpetuating the
disease.80

While TH2 polarization is generally higher in adult patients
with AD, IL-9 and IL-33, previously associated with peanut and
mite sensitization and induction of food allergies,81-85 which
are frequent in children but rare in adults,2 were increased in
pediatric control subjects and/or lesional pediatric AD. TH17-
related mediators showed consistently higher levels in children
with AD; this is reminiscent of what is seen in patients with
psoriasis, which is considered a TH17-centered disease.43 Our
findings are in line with the dominant role of the TH17 immune
axis in some murine models of AD,86,87 with TH17 being criti-
cally involved in the regulation of TH2 responses.46 Importantly,
IL-17 can be produced by several cellular subsets that are best
determined by using flow cytometry,88,89 but this analysis was
not possible with the limited available tissue. The profound
epidermal hyperplasia seen in early pediatric AD is also reflected

TABLE VI. Spearman correlations with epidermal thickness in

nonlesional pediatric skin

Marker r P value

IL13 0.704 .001

CCL26 0.684 .002

CD3 0.654 .003

MX1 0.623 .006

CCR7 0.615 .007

K16 0.589 .0102

IL22 0.548 .0185

S100A8 0.528 .024

IL12RB1 0.527 .025

CXCL11 0.521 .026

IL31 0.504 .033

CCL22 0.482 .043

IL21 0.475 .046

FcεRI 0.471 .049

IL2 0.468 .05

FOXP3 0.449 .062

S100A9 0.444 .065

IL12RB2 0.431 .074

TSLPR 0.417 .085

CD11c 0.412 .089

CCL18 0.408 .093

IFN-g 0.402 .099

LL37 0.394 .105

TABLE VII. Spearman correlations with K16 mRNA expression

in nonlesional pediatric skin

Marker r P value

S100A9 0.717 .001

S100A8 0.698 .001

IL9 0.694 .001

IL12 23p40 0.644 .004

S100A12 0.635 .004

CCR7 0.623 .005

IL22 0.602 .008

HBD3 0.589 .009

Epidermal thickness 0.589 .01

MX1 0.54 .018

CCL17 0.537 .019

IL17A 0.525 .021

CCL22 0.525 .023

LL37 0.518 .025

CXCL1 0.514 .026

CXCL10 0.486 .037

DEFB4B 0.467 .046

IL19 0.465 .047

IL23p19 0.444 .058

SCORAD itch 0.441 .059

CD3 0.44 .0678

IL23R 0.427 .07

CCL18 0.423 .073

FOXP3 0.414 .079

CXCL9 0.414 .079

IL21 0.399 .091

CXCL11 0.398 .092

IL31 0.397 .093

IL13 0.391 .099

CCL26 0.381 .11

HBD3, Human beta defensin 3.
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by significant increases in levels of IL-20 family cytokines (IL-19,
IL-20, and IL-22) and associated S100As already in nonlesional
skin. These cytokines induce hyperplasia,90,91 and S100As are
chemotactic mediators92,93 that affect cell growth and differenti-
ation94,95 and might contribute to the recruitment of immune
cells to trigger disease onset.92,96,97 In particular, there were
impressive upregulations of IL-19 levels in early-onset nonle-
sional and lesional pediatric skin. IL-19 is induced by both
IL-17 and IL-4/IL-1398,99 and amplifies the effects of IL-17 on
keratinocytes.98 Indeed, IL-19 levels and TH17 activation are
highly increased in Asian patients with AD, which bears some
similarities with psoriasis.3 Thus the marked hyperplasia and
correlations between hyperplasia and TH2 markers in skin of pe-
diatric patients with AD might be attributable to highly increased
IL-19 levels, possibly bridging TH2 and TH17 axes.

Although increased TH2 and TH17 responses are consistent
with a bias toward these axes in blood from healthy infants,100

our skin data differ from peripheral blood findings in children
with AD, which showed primarily TH2 skewing among
skin-homing T cells.36 Perhaps pathogenically relevant T-cell
populations have already migrated to the skin and cannot be
detected in blood during early AD, in contrast to longstanding
adult disease, in which TH2- and TH22-skewed T cells are found
in the periphery.101

Despite strong TH2 induction, both pediatric lesional and
nonlesional AD clustered around psoriasis but not adult AD.
These data suggest profound differences between new-onset
pediatric and longstanding adult disease, with important
implications for future therapeutic approaches. In addition,
nonlesional pediatric AD shows strong immune activation,
clustering farther away from normal skin than adult lesional
and nonlesional AD. Thus nonlesional pediatric AD might
facilitate an understanding of mechanisms permissive for disease
initiation, as reflected by decreased TH1 and regulatory responses

but upregulated TH17/TH22-associated mediators when
compared with adult disease. The profound immune activation
in nonlesional pediatric skin might suggest the need for early
systemic intervention at disease initiation, especially if future
studies suggest that early intervention reduces the development
of allergic disease of other organs (the atopic march).

In conclusion, AD begins as a multicytokine response in the
skin, with marked TH17, TH9, TH2, and TH22 activation at disease
onset in both lesional and nonlesional skin; differential immune
skewing and barrier responses compared with adult patients
with AD; and shared molecular features with psoriasis. These
findings are likely to result in both a different understanding of
AD onset and distinct treatment approaches for infants and
children.

Clinical implications: Targeting ofmultiple cytokine axes might
be needed to effectively treat early-onset AD in children.
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HBD3, Human beta defensin 3.
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